A type-augmented knowledge graph embedding framework for knowledge graph completion

Author:

He Peng,Zhou Gang,Yao Yao,Wang Zhe,Yang Hao

Abstract

AbstractKnowledge graphs (KGs) are of great importance to many artificial intelligence applications, but they usually suffer from the incomplete problem. Knowledge graph embedding (KGE), which aims to represent entities and relations in low-dimensional continuous vector spaces, has been proved to be a promising approach for KG completion. Traditional KGE methods only concentrate on structured triples, while paying less attention to the type information of entities. In fact, incorporating entity types into embedding learning could further improve the performance of KG completion. To this end, we propose a universal Type-augmented Knowledge graph Embedding framework (TaKE) which could utilize type features to enhance any traditional KGE models. TaKE automatically captures type features under no explicit type information supervision. And by learning different type representations of each entity, TaKE could distinguish the diversity of types specific to distinct relations. We also design a new type-constrained negative sampling strategy to construct more effective negative samples for the training process. Extensive experiments on four datasets from three real-world KGs (Freebase, WordNet and YAGO) demonstrate the merits of our proposed framework. In particular, combining TaKE with the recent tensor factorization KGE model SimplE can achieve state-of-the-art performance on the KG completion task.

Funder

the Science and Technology Research Project of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3