Author:
Barberio Marino Domenico,Gori Francesca,Barbieri Maurizio,Billi Andrea,Caracausi Antonio,De Luca Gaetano,Franchini Stefania,Petitta Marco,Doglioni Carlo
Abstract
AbstractChemical and physical responses of groundwater to seismicity have been documented for thousands of years. Among the waves produced by earthquakes, Rayleigh waves can spread to great distances and produce hydrogeological perturbations in response to their passage. In this work, the groundwater level, which was continuously recorded in a monitoring well in Central Italy between July 2014 and December 2019, exhibited evident responses to dynamic crustal stress. In detail, 18 sharp variations of the groundwater level due to worldwide Mw ≥ 6.5 earthquakes were observed. Apart from earthquakes that occurred in Papua New Guinea and those with a hypocentral depth > 150 km, all far away Mw ≥ 7.6 earthquakes produced impulsive oscillations of groundwater. As the earthquake magnitude decreased, only some earthquakes with 6.5 ≤ Mw < 7.6 caused groundwater level perturbations, depending on the data acquisition frequency and epicentral distance from the monitoring well. A clear correlation between earthquake distance and magnitude in hydrogeological responses was found. Our results shed light on the hydrosensitivity of the study site and on the characteristics of fractured aquifer systems. Detecting the water table variations induced by distant earthquakes is another step towards a correct identification of (preseismic) hydrogeological changes due to near-field seismicity.
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献