Breast cancer detection using enhanced IRI-numerical engine and inverse heat transfer modeling: model description and clinical validation

Author:

Gutierrez Carlos,Owens Alyssa,Medeiros Lori,Dabydeen Donnette,Sritharan Nithya,Phatak Pradyumna,Kandlikar Satish G.

Abstract

AbstractEffective treatment of breast cancer relies heavily on early detection. Routine annual mammography is a widely accepted screening technique that has resulted in significantly improving the survival rate. However, it suffers from low sensitivity resulting in high false positives from screening. To overcome this problem, adjunctive technologies such as ultrasound are employed on about 10% of women recalled for additional screening following mammography. These adjunctive techniques still result in a significant number of women, about 1.6%, who undergo biopsy while only 0.4% of women screened have cancers. The main reason for missing cancers during mammography screening arises from the masking effect of dense breast tissue. The presence of a tumor results in the alteration of temperature field in the breast, which is not influenced by the tissue density. In the present paper, the IRI-Numerical Engine is presented as an adjunct for detecting cancer from the surface temperature data. It uses a computerized inverse heat transfer approach based on Pennes’s bioheat transfer equations. Validation of this enhanced algorithm is conducted on twenty-three biopsy-proven breast cancer patients after obtaining informed consent under IRB protocol. The algorithm correctly predicted the size and location of cancerous tumors in twenty-four breasts, while twenty-two contralateral breasts were also correctly predicted to have no cancer (one woman had bilateral breast cancer). The tumors are seen as highly perfused and metabolically active heat sources that alter the surface temperatures that are used in heat transfer modeling. Furthermore, the results from this study with twenty-four biopsy-proven cancer cases indicate that the detection of breast cancer is not affected by breast density. This study indicates the potential of the IRI-Numerical Engine as an effective adjunct to mammography. A large scale clinical study in a statistically significant sample size is needed before integrating this approach in the current protocol.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3