Compressive Sensing for Dynamic XRF Scanning

Author:

Kourousias George,Billè Fulvio,Borghes Roberto,Alborini Antonio,Sala Simone,Alberti Roberto,Gianoncelli Alessandra

Abstract

AbstractX-Ray Fluorescence (XRF) scanning is a widespread technique of high importance and impact since it provides chemical composition maps crucial for several scientific investigations. There are continuous requirements for larger, faster and highly resolved acquisitions in order to study complex structures. Among the scientific applications that benefit from it, some of them, such as wide scale brain imaging, are prohibitively difficult due to time constraints. However, typically the overall XRF imaging performance is improving through technological progress on XRF detectors and X-ray sources. This paper suggests an additional approach where XRF scanning is performed in a sparse way by skipping specific points or by varying dynamically acquisition time or other scan settings in a conditional manner. This paves the way for Compressive Sensing in XRF scans where data are acquired in a reduced manner allowing for challenging experiments, currently not feasible with the traditional scanning strategies. A series of different compressive sensing strategies for dynamic scans are presented here. A proof of principle experiment was performed at the TwinMic beamline of Elettra synchrotron. The outcome demonstrates the potential of Compressive Sensing for dynamic scans, suggesting its use in challenging scientific experiments while proposing a technical solution for beamline acquisition software.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3