A preliminary study on the mechanism of VASH2 in childhood medulloblastoma

Author:

Liu Wen,Fu Yinan,Wang Meng,Zhao Junhong,Chen Julin,Wang Yongxin,Qin Hu

Abstract

AbstractTo study the differences in VASH2 expression in pediatric medulloblastoma (MB) tumor tissues of different molecular subtypes, to analyze the correlation between VASH2 and the molecular subtypes of medulloblastoma, clinicopathological data, and prognosis, and to explore the specific mechanism of VASH2’s role in SHH medulloblastoma cell lines DAOY. We analyzed 47 pediatric medulloblastoma cases admitted to the Department of Pediatric Neurosurgery of the First Affiliated Hospital of Xinjiang Medical University from January 2011 to December 2019, and the expression levels of YAP1 and GAB1 in these tumor tissues were detected by immunohistochemistry (IHC) and molecularly typed (WNT-type, SHH-type, and non-WNT/SHH-type). The correlation between VASH2 and molecular typing of medulloblastoma was analyzed. We also analyzed the medulloblastoma dataset in the GEO database (GSE30074 and GSE202043) to explore the correlation between VASH2 and the prognosis of medulloblastoma patients, as well as performed a comprehensive GO enrichment analysis specifically for the VASH2 gene to reveal the underlying biological pathways of its complex molecular profile. We used vasopressin 2 (VASH2) as a research target and overexpressed and knocked down VASH2 in SHH medulloblastoma cell lines DAOY by lentiviral vectors in vitro, respectively, to investigate its role in SHH medulloblastoma cell lines DAOY cell proliferation, apoptosis, migration, invasion and biological roles in the cell cycle. (1) Among 47 pediatric medulloblastoma cases, 8 were WNT type, 29 were SHH type, and 10 were non-WNT/SHH type. the positive rate of VASH2 was highest in the SHH type with a 68.97% positive rate, followed by non-WNT/SHH and lowest in the WNT type. The results of the multifactorial analysis showed that positive expression of VASH2 was associated with medulloblastoma molecular subtype (SHH type), site of tumor development (four ventricles), and gender (male), P < 0.05. (2) The results of cellular experiments showed that overexpression of VASH2 increased the invasion and migration ability of medulloblast Daoy, while knockdown of VASH2 inhibited the invasion and Overexpression of VASH2 upregulated the expression of Smad2 + 3, Smad4, Mmp2 and the apoptotic indicators Bcl-2 and Caspase3, while knockdown of VASH2 suppressed the expression of Smad2 + 3 and Mmp2, and silenced the expression of Smad4 and the apoptotic indicators Bcl2, Caspase3 expression. Flow cytometric cycle analysis showed that VASH2 overexpression increased the S phase in the Daoy cell cycle, while VASH2 knockdown decreased the S phase in the SHH medulloblastoma cell lines DAOY cell cycle. Bioinformatics analysis showed that there was no statistically significant difference between the expression of VASH2 genes in the GSE30074 and GSE202043 datasets and the prognosis of the patients, but the results of this dataset analysis suggested that we need to continue to expand the sample size of the study in the future. The results of the GO enrichment analysis showed that the angiogenic pathway was the most significantly enriched, and the PPI interactions network of VASH2 was obtained from the STRING database. Using the STRING database, we obtained the PPI interaction network of VASH2, and the KEGG enrichment analysis of VASH2-related genes showed that VASH2-related genes were related to the apoptosis pathway, and therefore it was inferred that VASH2 also affects the development of tumors through apoptosis. We found for the first time that the positive expression rate of VASH2 was closely associated with SHH-type pediatric medulloblastoma and that VASH2 was involved in the invasion, migration, cell cycle, and apoptotic capacity of SHH medulloblastoma cell lines DAOY by affecting downstream indicators of the TGF-β pathway. This suggests that it is involved in the progression of pediatric medulloblastoma, and VASH2 is expected to be a diagnostic and therapeutic target for SHH-type pediatric medulloblastoma.

Funder

Shanghai Cooperation Organization Science and Technology Partnership Program and International Science and Technology Cooperation Program

the Graduate Student Innovation Project of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3