Abstract
AbstractTardigrades can cope with adverse environmental conditions by turning into anhydrobiotes with a characteristic tun shape. Tun formation is an essential morphological adaptation for tardigrade entry into the anhydrobiotic state. The tun cell structure and ultrastructure have rarely been explored in tardigrades in general and never in Hypsibius exemplaris. We used transmission electron microscopy to compare cellular organization and ultrastructures between hydrated and anhydrobiotic H. exemplaris. Despite a globally similar cell organelle structure and a number of cells not significantly different between hydrated and desiccated tardigrades, reductions in the sizes of both cells and mitochondria were detected in dehydrated animals. Moreover, in anhydrobiotes, secretory active cells with a dense endoplasmic reticulum network were observed. Interestingly, these anhydrobiote-specific cells are in a close relationship with a specific extracellular structure surrounding each cell. It is possible that this rampart-like extracellular structure resulted from the accumulation of anhydrobiotic-specific material to protect the cells. Interestingly, after five hours of rehydration, the number of secretory cells decreased, and the specific extracellular structure began to disappear. Twenty-four hours after the beginning of rehydration, the cellular structure and ultrastructure were comparable to those observed in hydrated tardigrades.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Crowe, J. The physiology of cryptobiosis in Tardigrades. Mem. Ist. Ital. Idrobiol. 32, 37–59 (1975).
2. Jönsson, K. I. The nature of selection on anhydrobiotic capacity in Tardigrades. Zool. Anz. J. Comp. Zool. 240, 409–417 (2001).
3. Watanabe, M. Anhydrobiosis in invertebrates. Appl. Entomol. Zool. 41, 15–31 (2006).
4. Crowe, J. H. Anhydrobiosis: an unsolved problem. Am. Nat. 105, 563–573 (1971).
5. Bertolani, R. et al. Experiences with dormancy in Tardigrades. J. Limnol. 63, 16–25 (2004).
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献