Identification of functional features underlying heat stress response in Sprague–Dawley rats using mixed linear models

Author:

Kotlarz Krzysztof,Mielczarek Magda,Wang Yachun,Dou Jinhuan,Suchocki Tomasz,Szyda Joanna

Abstract

AbstractSince global temperature is expected to rise by 2 °C in 2050 heat stress may become the most severe environmental factor. In the study, we illustrate the application of mixed linear models for the analysis of whole transcriptome expression in livers and adrenal tissues of Sprague–Dawley rats obtained by a heat stress experiment. By applying those models, we considered four sources of variation in transcript expression, comprising transcripts (1), genes (2), Gene Ontology terms (3), and Reactome pathways (4) and focussed on accounting for the similarity within each source, which was expressed as a covariance matrix. Models based on transcripts or genes levels explained a larger proportion of log2 fold change than models fitting the functional components of Gene Ontology terms or Reactome pathways. In the liver, among the most significant genes were PNKD and TRIP12. In the adrenal tissue, one transcript of the SUCO gene was expressed more strongly in the control group than in the heat-stress group. PLEC had two transcripts, which were significantly overexpressed in the heat-stress group. PER3 was significant only on gene level. Moving to the functional scale, five Gene Ontologies and one Reactome pathway were significant in the liver. They can be grouped into ontologies related to DNA repair, histone ubiquitination, the regulation of embryonic development and cytoplasmic translation. Linear mixed models are valuable tools for the analysis of high-throughput biological data. Their main advantages are the possibility to incorporate information on covariance between observations and circumventing the problem of multiple testing.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3