Development and evaluation of bidirectional LSTM freeway traffic forecasting models using simulation data

Author:

Abduljabbar Rusul L.,Dia Hussein,Tsai Pei-Wei

Abstract

AbstractLong short-term memory (LSTM) models provide high predictive performance through their ability to recognize longer sequences of time series data. More recently, bidirectional deep learning models (BiLSTM) have extended the LSTM capabilities by training the input data twice in forward and backward directions. In this paper, BiLSTM short term traffic forecasting models have been developed and evaluated using data from a calibrated micro-simulation model for a congested freeway in Melbourne, Australia. The simulation model was extensively calibrated and validated to a high degree of accuracy using field data collected from 55 detectors on the freeway. The base year simulation model was then used to generate loop detector data including speed, flow and occupancy which were used to develop and compare a number of LSTM models for short-term traffic prediction up to 60 min into the future. The modelling results showed that BiLSTM outperformed other predictive models for multiple prediction horizons for base year conditions. The simulation model was then adapted for future year scenarios where the traffic demand was increased by 25–100 percent to reflect potential future increases in traffic demands. The results showed superior performance of BiLSTM for multiple prediction horizons for all traffic variables.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference72 articles.

1. Abduljabbar, R. & Dia, H. Predictive Intelligence: a neural network learning system for traffic condition prediction and monitoring on freeways. J. Eastern Asia Soc. Transp. Stud. 13, 1785–1800 (2019).

2. Abduljabbar, R., Dia, H., Liyanage, S. & Bagloee, S. A. Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019).

3. Mahamuni, A. Internet of Things, machine learning, and artificial intelligence in the modern supply chain and transportation. Defense Transp. J. 74, 14–17 (2018).

4. Ma, X., Tao, Z., Wang, Y., Yu, H. & Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerging Technol. 54, 187–197 (2015).

5. Kang, D., Lv, Y. & Chen, Y. Y. Short-term traffic flow prediction with LSTM recurrent neural network. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) 1–6 (IEEE, 2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3