Research on collaborative edge network service migration strategy based on crowd clustering

Author:

Cao Junjie,Yu Zhiyong,Xue Bin

Abstract

AbstractThe innovative application of Crowd Intelligent Devices (CIDS) in edge networks has garnered attention due to the rapid development of artificial intelligence and computer technology. This application offers users more reliable and low-latency computing services through computation offloading technology. However, the dynamic nature of network terminals and the limited coverage of edge servers pose challenges, such as data loss and service interruption. Furthermore, the high-speed mobility of intelligent terminals in the dynamic edge network environment further complicates the design of computation offloading and service migration strategies. To address these challenges, this paper explores the computation offloading model of cluster intelligence collaboration in a heterogeneous network environment. This model involves multiple intelligences collaborating to provide computation offloading services for terminals. To accommodate various roles, a switching strategy of split-cluster group collaboration is introduced, assigning the cluster head, the alternate cluster head, and the ordinary user are assigned to a group with different functions. Additionally, the paper formulates the optimal offloading strategy for group smart terminals as a Markov decision process, taking into account factors such as user mobility, service delay, service accuracy, and migration cost. To implement this strategy, the paper utilizes the deep reinforcement learning-based CCSMS algorithm. Simulation results demonstrate that the proposed edge network service migration strategy, rooted in groupwise cluster collaboration, effectively mitigates interruption delay and enhances service migration efficiency.

Funder

National Natural Science Foundation of China under Grant

Youth Talent Promotion Project of China Association for Science and Technology

Scientific Research Plan of National University of Defense Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3