Author:
Yuan Hao,Zhang Xue,Zhao Lina,Chang Huihui,Yang Chao,Qiu Zhongying,Huang Yuan
Abstract
AbstractAcrididae are diverse in size, body shape, behavior, ecology and life history; widely distributed; easy to collect; and important to agriculture. They represent promising model candidates for functional genomics, but their extremely large genomes have hindered this research; establishing a reference transcriptome for a species is the primary means of obtaining genetic information. Here, two Acrididae species, Gomphocerus licenti and Mongolotettix japonicus, were selected for full-length (FL) PacBio transcriptome sequencing. For G. licenti and M. japonicus, respectively, 590,112 and 566,165 circular consensus sequences (CCS) were generated, which identified 458,131 and 428,979 full-length nonchimeric (FLNC) reads. After isoform-level clustering, next-generation sequencing (NGS) short sequences were used for error correction, and remove redundant sequences with CD-HIT, 17,970 and 16,766 unigenes were generated for G. licenti and M. japonicus. In addition, we obtained 17,495 and 16,373 coding sequences, 1,082 and 813 transcription factors, 11,840 and 10,814 simple sequence repeats, and 905 and 706 long noncoding RNAs by analyzing the transcriptomes of G. licenti and M. japonicus, respectively, and 15,803 and 14,846 unigenes were annotated in eight functional databases. This is the first study to sequence FL transcriptomes of G. licenti and M. japonicus, providing valuable genetic resources for further functional genomics research.
Funder
Natural Science Basic Research Plan in Shaanxi Province of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Pevsner, J. Bioinformatics and functional genomics (Wiley, London, 2015).
2. Ioannidis, P. et al. Genomic features of the damselfly Calopteryx splendens representing a sister clade to most insect orders. Genome Biol. Evol. 9, 415–430 (2017).
3. Gulia-Nuss, M. et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7, 10507 (2016).
4. Kim, B.-M. et al. The genome of common long-arm octopus Octopus minor. GigaScience 7, giy119 (2018).
5. Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501 (2018).