Wavefront shaping assisted design of spectral splitters and solar concentrators

Author:

Gün Berk N.,Yüce Emre

Abstract

AbstractSpectral splitters, as well as solar concentrators, are commonly designed and optimized using numerical methods. Here, we present an experimental method to spectrally split and concentrate broadband light (420–875 nm) via wavefront shaping. We manage to spatially control white light using a phase-only spatial light modulator. As a result, we are able to split and concentrate three frequency bands, namely red (560–875 nm), green (425–620 nm), and blue (420–535 nm), to two target spots with a total enhancement factor of 715%. Despite the significant overlap between the color channels, we obtain spectral splitting ratios as 52%, 57%, and 66% for red, green, and blue channels, respectively. We show that a higher number of adjustable superpixels ensures higher spectral splitting and concentration. We provide the methods to convert an optimized phase pattern into a diffractive optical element that can be fabricated at large scale and low cost. The experimental method that we introduce, for the first time, enables the optimization and design of SpliCons, which is $$\sim 300$$ 300 times faster compared to the computational methods.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3