A novel design and analysis of hybrid fuzzy logic MPPT controller for solar PV system under partial shading conditions

Author:

Kumar Sunkara Sunil,Balakrishna K.

Abstract

AbstractRenewable energy resources are more useful when associated with the thermal power generation network because of their high accessibility in the environment, good system response, easy manufacturing, plus high scalable. So, the present research is going on solar power to reduce consumer grid dependency. The running of the PV network is quite easier, plus less human sources are involved. However, the solar modules’ power generation is nonlinear fashion. So, the collection of peak power from the sunlight-dependent systems is a highly challenging task. In this article, a Modified Differential Step Grey Wolf Optimization with Adaptive Fuzzy Logic Controller (MDSGWO with FLC) is developed for collecting the maximum power from renewable energy resources under diverse Partial Shading Conditions (PSCs). The introduced method comprehensive analysis has been done along with the other recently existing MPPT methods in terms of convergence speed, MPP tracking accuracy, operating efficiency of the introduced method, functioning duty value of the DC–DC boost power converter, dependence of MPPT on sunlight system, total number of sensing devices are needed, plus peak power extraction from the proposed system. Here, the sunlight power generation cost is more to limit this issue, a power converter is selected in the second objective to develop the voltage source capability of the PV network. The overall PV-interfaced power converter network is examined by utilizing the MATLAB environment.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized integration of renewable energy sources using seven-level converter controlled by ANFIS-CS-GWO;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3