Nano fuzzy alarming system for blood transfusion requirement detection in cancer using deep learning

Author:

Rady Raz Nasibeh,Anoushirvani Ali Arash,Rahimian Neda,Ghoerishi Maryam,Alibeik Nazanin,Sajadi Rad Masoumeh

Abstract

AbstractPeriodic blood transfusion is a need in cancer patients in which the disease process as well as the chemotherapy can disrupt the natural production of blood cells. However, there are concerns about blood transfusion side effects, the cost, and the availability of donated blood. Therefore, predicting the timely requirement for blood transfusion considering patient variability is a need, and here for the first-time deal with this issue in blood cancer using in vivo data. First, a data set of 98 samples of blood cancer patients including 61 features of demographic, clinical, and laboratory data are collected. After performing multivariate analysis and the approval of an expert, effective parameters are derived. Then using a deep recurrent neural network, a system is presented to predict a need for packed red blood cell transfusion. Here, we use a Long Short-Term Memory (LSTM) neural network for modeling and the cross-validation technique with 5 layers for validation of the model along with comparing the result with networking and non-networking machine learning algorithms including bidirectional LSTM, AdaBoost, bagging decision tree based, bagging KNeighbors, and Multi-Layer Perceptron (MLP). Results show the LSTM outperforms the other methods. Then, using the swarm of fuzzy bioinspired nanomachines and the most effective parameters of Hgb, PaO2, and pH, we propose a feasibility study on nano fuzzy alarming system (NFABT) for blood transfusion requirements. Alarming decisions using the Internet of Things (IoT) gateway are delivered to the physician for performing medical actions. Also, NFABT is considered a real-time non-invasive AI-based hemoglobin monitoring and alarming method. Results show the merits of the proposed method.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3