Peak ground acceleration prediction for on-site earthquake early warning with deep learning

Author:

Liu Yanqiong,Zhao QingxuORCID,Wang Yanwei

Abstract

AbstractRapid and accurate prediction of peak ground acceleration (PGA) is an important basis for determining seismic damage through on-site earthquake early warning (EEW). The current on-site EEW uses the feature parameters of the first arrival P-wave to predict PGA, but the selection of these feature parameters is limited by human experience, which limits the accuracy and timeliness of predicting peak ground acceleration (PGA). Therefore, an end-to-end deep learning model is proposed for predicting PGA (DLPGA) based on convolutional neural networks (CNNs). In DLPGA, the vertical initial arrival 3–6 s seismic wave from a single station is used as input, and PGA is used as output. Features are automatically extracted through a multilayer CNN to achieve rapid PGA prediction. The DLPGA is trained, verified, and tested using Japanese seismic records. It is shown that compared to the widely used peak displacement (Pd) method, the correlation coefficient of DLPGA for predicting PGA has increased by 12–23%, the standard deviation of error has decreased by 22–25%, and the error mean has decreased by 6.92–19.66% with the initial 3–6 s seismic waves. In particular, the accuracy of DLPGA for predicting PGA with the initial 3 s seismic wave is better than that of Pd for predicting PGA with the initial 6 s seismic wave. In addition, using the generalization test of Chilean seismic records, it is found that DLPGA has better generalization ability than Pd, and the accuracy of distinguishing ground motion destructiveness is improved by 35–150%. These results confirm that DLPGA has significant accuracy and timeliness advantages over artificially defined feature parameters in predicting PGA, which can greatly improve the effect of on-site EEW in judging the destructiveness of ground motion.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gümüşhane ilinde deprem ivme ve manyetik alan istasyonlarının kurulumu ve işletilmesi;Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3