Deep Learning-based Inaccuracy Compensation in Reconstruction of High Resolution XCT Data

Author:

Topal Emre,Löffler Markus,Zschech Ehrenfried

Abstract

AbstractWhile X-ray computed tomography (XCT) is pushed further into the micro- and nanoscale, the limitations of various tool components and object motion become more apparent. For high-resolution XCT, it is necessary but practically difficult to align these tool components with sub-micron precision. The aim is to develop a novel reconstruction methodology that considers unavoidable misalignment and object motion during the data acquisition in order to obtain high-quality three-dimensional images and that is applicable for data recovery from incomplete datasets. A reconstruction software empowered by sophisticated correction modules that autonomously estimates and compensates artefacts using gradient descent and deep learning algorithms has been developed and applied. For motion estimation, a novel computer vision methodology coupled with a deep convolutional neural network approach provides estimates for the object motion by tracking features throughout the adjacent projections. The model is trained using the forward projections of simulated phantoms that consist of several simple geometrical features such as sphere, triangle and rectangular. The feature maps extracted by a neural network are used to detect and to classify features done by a support vector machine. For missing data recovery, a novel deep convolutional neural network is used to infer high-quality reconstruction data from incomplete sets of projections. The forward and back projections of simulated geometric shapes from a range of angular ranges are used to train the model. The model is able to learn the angular dependency based on a limited angle coverage and to propose a new set of projections to suppress artefacts. High-quality three-dimensional images demonstrate that it is possible to effectively suppress artefacts caused by thermomechanical instability of tool components and objects resulting in motion, by center of rotation misalignment and by inaccuracy in the detector position without additional computational efforts. Data recovery from incomplete sets of projections result in directly corrected projections instead of suppressing artefacts in the final reconstructed images. The proposed methodology has been proven and is demonstrated for a ball bearing sample. The reconstruction results are compared to prior corrections and benchmarked with a commercially available reconstruction software. Compared to conventional approaches in XCT imaging and data analysis, the proposed methodology for the generation of high-quality three-dimensional X-ray images is fully autonomous. The methodology presented here has been proven for high-resolution micro-XCT and nano-XCT, however, is applicable for all length scales.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3