Dimensions management of traffic big data for short-term traffic prediction on suburban roadways

Author:

Rasaizadi Arash,Hafizi Fateme,Seyedabrishami Seyedehsan

Abstract

AbstractSince intelligent systems were developed to collect traffic data, this data can be collected at high volume, velocity, and variety, resulting in big traffic data. In previous studies, dealing with the large volume of big traffic data has always been discussed. In this study, big traffic data were used to predict traffic state on a section of suburban road from Karaj to Chalous located in the north of Iran. Due to the many and various extracted features, data dimensions management is necessary. This management was accomplished using principal component analysis to reduce the number of features, genetic algorithms to select features influencing traffic states, and cyclic features to change the nature of features. The data set obtained from each method is used as input to the models. The models used include long short-term memory, support vector machine, and random forest. The results show that using cyclic features can increase traffic state prediction's accuracy than the model, including all the initial features (base model). Long short-term memory model with 71 cyclic features offers the highest accuracy, equivalent to 88.09%. Additionally, this model's reduced number of features led to a shorter modelling execution time, from 456 s (base model) to 201 s.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3