Portable SA/CMC entrapped bimetallic magnetic fly ash zeolite spheres for heavy metals contaminated industrial effluents treatment via batch and column studies

Author:

Angaru Ganesh Kumar Reddy,Choi Yu-Lim,Lingamdinne Lakshmi Prasanna,Koduru Janardhan Reddy,Yang Jae-Kyu,Chang Yoon-Young,Karri Rama Rao

Abstract

AbstractHeavy metals are perceived as a significant environmental concern because of their toxic effect, bioaccumulation, and persistence. In this work, a novel sodium alginate (SA) and carboxymethylcellulose (CMC) entrapped with fly ash derived zeolite stabilized nano zero-valent iron and nickel (ZFN) (SA/CMC-ZFN), followed by crosslinking with CaCl2, is synthesized and applied for remediation of Cu(II) and Cr(VI) from industrial effluent. The characterization of the adsorbent and its surface mechanism for removing metals were investigated using advanced instrumental techniques, including XRD, FT-IR, SEM–EDX, BET, and XPS. The outcomes from the batch experiments indicated that monolayer adsorption on homogeneous surfaces (Langmuir isotherm model) was the rate-limiting step in both heavy metals sorption processes. The maximum adsorption capacity of as-prepared SA/CMC-ZFN was 63.29 and 10.15 mg/g for Cu(II) and Cr(VI), respectively. Owing to the fact that the wastewater released from industries are large and continuous, a continuous column is installed for simultaneous removal of heavy metal ions from real industrial wastewater. The outcomes revealed the potential of SA/CMC-ZFN as an efficient adsorbent. The experimental breakthrough curves fitted well with the theoretical values of Thomas and Yoon-Nelson models. Overall, the results indicated that SA/CMC-ZFN is a viable, efficient, and cost-effective water treatment both interms of batch and column processes.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3