Development of a machine learning-based clinical decision support system to predict clinical deterioration in patients visiting the emergency department

Author:

Choi Arom,Choi So Yeon,Chung Kyungsoo,Chung Hyun Soo,Song Taeyoung,Choi Byunghun,Kim Ji Hoon

Abstract

AbstractThis study aimed to develop a machine learning-based clinical decision support system for emergency departments based on the decision-making framework of physicians. We extracted 27 fixed and 93 observation features using data on vital signs, mental status, laboratory results, and electrocardiograms during emergency department stay. Outcomes included intubation, admission to the intensive care unit, inotrope or vasopressor administration, and in-hospital cardiac arrest. eXtreme gradient boosting algorithm was used to learn and predict each outcome. Specificity, sensitivity, precision, F1 score, area under the receiver operating characteristic curve (AUROC), and area under the precision-recall curve were assessed. We analyzed 303,345 patients with 4,787,121 input data, resampled into 24,148,958 1 h-units. The models displayed a discriminative ability to predict outcomes (AUROC > 0.9), and the model with lagging 6 and leading 0 displayed the highest value. The AUROC curve of in-hospital cardiac arrest had the smallest change, with increased lagging for all outcomes. With inotropic use, intubation, and intensive care unit admission, the range of AUROC curve change with the leading 6 was the highest according to different amounts of previous information (lagging). In this study, a human-centered approach to emulate the clinical decision-making process of emergency physicians has been adopted to enhance the use of the system. Machine learning-based clinical decision support systems customized according to clinical situations can help improve the quality of care.

Funder

Korea Medical Device Development Fund

Korea Health and Welfare Information Service

Severance Hospital Research fund for Clinical excellence

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3