Performance optimization of efficient PbS quantum dots solar cells through numerical simulation

Author:

Kumar Sandeep,Bharti Pragya,Pradhan Basudev

Abstract

AbstractColloidal quantum dots (CQDs) solar cells are less efficient because of the carrier recombination within the material. The electron and hole transport layers have high impact on the performance of CQDs based solar cells which makes its investigation a very important component of the development of the more efficient devices. In this work, we have tried performance optimization in tetrabutyl ammonium iodide capped lead sulfide (PbS) CQDs (PbS-TBAI) as absorber layers based solar cells by incorporating different hole transport layers (HTLs) to achieve better power conversion efficiency (PCE) in different device architectures by SCAPS—1D numerical simulation software. It was observed from the simulation that the ITO/TiO2/PbS-TBAI/HTL/Au device architecture shows higher power conversion efficiency as compared to the conventional experimentally realized device architecture of ITO/TiO2/PbS-TBAI/PbS-EDT/HTL/Au. The influence of interface defect density (IDD) at the interface TiO2/PbS-TBAI has also been studied where IDD is varied from 1 × 1013 cm−2 to 1 × 1018 cm−2 while keeping the rest of the device parameters intact. The result shows a noteworthy reduction in the PV performance of the device at higher IDD. This modelled device structure provides a new direction toward the experimental realization in high efficiency PbS QDs solar cells.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3