Environmentally-relevant concentrations of the antipsychotic drugs sulpiride and clozapine induce abnormal dopamine and serotonin signaling in zebrafish brain

Author:

Zhang Bo,Peng Xijian,Sun Xiumei,Guo Yuanming,Li Tiejun

Abstract

AbstractThe presence of drugs in surface and groundwaters adversely affects the physiological function of non-target organisms due special activities that can pose a serious threats to various forms of aquatic life. Psychotropic drugs are one of the most commonly used drugs in the world. Hence, the aim of this study was to investigate the effect of environmentally-relevant concentrations of the antipsychotic drugs, sulpiride and clozapine, on dopaminergic (DAergic) and serotonergic (5-HTergic) neurotransmitter systems in the brain of zebrafish. Adult zebrafish (AB strain) were exposed to the environmentally-relevant concentrations of sulpiride, clozapine, or a mixture of sulpiride and clozapine. The effects of the drugs on the mRNA and protein levels of major functional molecules in DAergic and 5-HTergic systems were then analyzed in the telencephalon and diencephalon. Both drugs induced abnormal mRNA and protein levels of important functional molecules of the DA and 5-HT signaling pathways in both telencephalon and diencephalon, as shown by the abnormal transcriptional levels of TH, DAT, DR D1, DR D2, MAO, TPH, serotonin transporter (SERT), 5-HTR 1AA, 5-HTR 1B, 5-THR 2AA, and 5-HTR 2B, and the abnormal translational levels of DAT, DR D2, SERT, 5-HTR 1A, 5-HTR 1B, and 5-HTR 2B. In addition, we observed a specificity in the adverse effects of these antipsychotic drugs, in terms of doses and brain parts. Compared to their effects alone, the drug mixture had a weaker effect on the DA and 5-HT systems, suggesting an antagonistic interaction between sulpiride and clozapine. Our findings suggest that sulpiride and clozapine interfere with DAergic and 5-HTergic neurotransmitter systems in the telencephalon and diencephalon of zebrafish, resulting in possible effects on brain functions and posing a serious threat to the health of zebrafish.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3