Author:
Wang Haoyu,Song Changqing,Wang Jinfeng,Gao Peichao
Abstract
AbstractSpatial clustering is an essential method for the comprehensive understanding of a region. Spatial clustering divides all spatial units into different clusters. The attributes of each cluster of the spatial units are similar, and simultaneously, they are as continuous as spatially possible. In spatial clustering, the handling of spatial outliers is important. It is necessary to improve spatial integration so that each cluster is connected as much as possible, while protecting spatial outliers can help avoid the excessive masking of attribute differences This paper proposes a new spatial clustering method for raster data robust to spatial outliers. The method employs a sliding window to scan the entire region to determine spatial outliers. Additionally, a mechanism based on the range and standard deviation of the spatial units in each window is designed to judge whether the spatial integration should be further improved or the spatial outliers should be protected. To demonstrate the usefulness of the proposed method, we applied it in two case study areas, namely, Changping District and Pinggu District in Beijing. The results show that the proposed method can retain the spatial outliers while ensuring that the clusters are roughly contiguous. This method can be used as a simple but powerful and easy-to-interpret alternative to existing geographical spatial clustering methods.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献