Targeted mutagenesis of the ryanodine receptor by Platinum TALENs causes slow swimming behaviour in Pacific bluefin tuna (Thunnus orientalis)

Author:

Higuchi KentaroORCID,Kazeto Yukinori,Ozaki Yuichi,Yamaguchi Toshiya,Shimada Yukinori,Ina Yoshiaki,Soma Satoshi,Sakakura Yoshitaka,Goto Rie,Matsubara Takahiro,Nishiki Issei,Iwasaki Yuki,Yasuike Motoshige,Nakamura YojiORCID,Matsuura Aiko,Masuma Shukei,Sakuma Tetsushi,Yamamoto Takashi,Masaoka Tetsuji,Kobayashi Takanori,Fujiwara Atushi,Gen Koichiro

Abstract

Abstract In bluefin tuna aquaculture, high mortalities of hatchery-reared juveniles occur in sea cages owing to wall collisions that are caused by high-speed swimming in panic due to changes in illuminance. Here, we report that targeted gene mutagenesis of the ryanodine receptor (RyR1b), which allows the sarcoplasmic reticulum to release Ca2+ in fast skeletal muscle, using highly active Platinum TALENs caused slow swimming behaviour in response to external stimuli in Pacific bluefin tuna (PBT) larvae. This characteristic would be a useful trait to prevent wall collisions in aquaculture production. A pair of Platinum TALENs targeting exons 2 and 43 of the PBT ryr1b gene induced deletions in each TALEN target site of the injected embryos with extremely high efficiency. In addition, ryr1b expression was significantly decreased in the mutated G0 larvae at 7 days after hatching (DAH). A touch-evoked escape behaviour assay revealed that the ryr1b-mutated PBT larvae swam away much less efficiently in response to mechanosensory stimulation at 7 DAH than did the wild-type larvae. Our results demonstrate that genome editing technologies are effective tools for determining the functional characterization of genes in a comparatively short period, and create avenues for facilitating genetic studies and breeding of bluefin tuna species.

Funder

NARO | Bio-oriented Technology Research Advancement Institution

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3