An innovative ovine model of severe cardiopulmonary failure supported by veno-arterial extracorporeal membrane oxygenation

Author:

Heinsar Silver,Jung Jae-Seung,Colombo Sebastiano Maria,Rozencwajg Sacha,Wildi Karin,Sato Kei,Ainola Carmen,Wang Xiaomeng,Abbate Gabriella,Sato Noriko,Dyer Wayne Bruce,Livingstone Samantha Annie,Pimenta Leticia Pretti,Bartnikowski Nicole,Bouquet Mahe Jeannine Patricia,Passmore Margaret,Vidal Bruno,Palmieri Chiara,Reid Janice D.,Haqqani Haris M.,McGuire Daniel,Wilson Emily Susan,Rätsep Indrek,Lorusso Roberto,Suen Jacky Y.,Bassi Gianluigi Li,Fraser John F.

Abstract

AbstractRefractory cardiogenic shock (CS) often requires veno-arterial extracorporeal membrane oxygenation (VA-ECMO) to sustain end-organ perfusion. Current animal models result in heterogenous cardiac injury and frequent episodes of refractory ventricular fibrillation. Thus, we aimed to develop an innovative, clinically relevant, and titratable model of severe cardiopulmonary failure. Six sheep (60 ± 6 kg) were anaesthetized and mechanically ventilated. VA-ECMO was commenced and CS was induced through intramyocardial injections of ethanol. Then, hypoxemic/hypercapnic pulmonary failure was achieved, through substantial decrease in ventilatory support. Echocardiography was used to compute left ventricular fractional area change (LVFAC) and cardiac Troponin I (cTnI) was quantified. After 5 h, the animals were euthanised and the heart was retrieved for histological evaluations. Ethanol (58 ± 23 mL) successfully induced CS in all animals. cTnI levels increased near 5000-fold. CS was confirmed by a drop in systolic blood pressure to 67 ± 14 mmHg, while lactate increased to 4.7 ± 0.9 mmol/L and LVFAC decreased to 16 ± 7%. Myocardial samples corroborated extensive cellular necrosis and inflammatory infiltrates. In conclusion, we present an innovative ovine model of severe cardiopulmonary failure in animals on VA-ECMO. This model could be essential to further characterize CS and develop future treatments.

Funder

The Prince Charles Hospital Foundation, Australia

National Health and Medical Research Council (Australia) Centre for Research Excellence in Advanced Cardiorespiratory Therapies Improving OrgaN Support

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3