Reconstruction algorithms for DNA-storage systems

Author:

Sabary Omer,Yucovich Alexander,Shapira Guy,Yaakobi Eitan

Abstract

AbstractMotivated by DNA storage systems, this work presents the DNA reconstruction problem, in which a length-n string, is passing through the DNA-storage channel, which introduces deletion, insertion and substitution errors. This channel generates multiple noisy copies of the transmitted string which are called traces. A DNA reconstruction algorithm is a mapping which receives t traces as an input and produces an estimation of the original string. The goal in the DNA reconstruction problem is to minimize the edit distance between the original string and the algorithm’s estimation. In this work, we present several new algorithms for this problem. Our algorithms look globally on the entire sequence of the traces and use dynamic programming algorithms, which are used for the shortest common supersequence and the longest common subsequence problems, in order to decode the original string. Our algorithms do not require any limitations on the input and the number of traces, and more than that, they perform well even for error probabilities as high as 0.27. The algorithms have been tested on simulated data, on data from previous DNA storage experiments, and on a new synthesized dataset, and are shown to outperform previous algorithms in reconstruction accuracy.

Funder

European Union

Israel Innovation Authority

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DNA Storage Toolkit: A Modular End-to-End DNA Data Storage Codec and Simulator;2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2024-05-05

2. GradHC: highly reliable gradual hash-based clustering for DNA storage systems;Bioinformatics;2024-04-22

3. An Instance-Based Approach to the Trace Reconstruction Problem;2024 58th Annual Conference on Information Sciences and Systems (CISS);2024-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3