Transient response of magnetorheological fluid on rapid change of magnetic field in shear mode

Author:

Kubík Michal,Válek Josef,Žáček Jiří,Jeniš Filip,Borin Dmitry,Strecker Zbyněk,Mazůrek Ivan

Abstract

AbstractThe transient behaviour of magnetorheological (MR) devices is an important parameter for modern semi-actively controlled suspension systems. A significant part of the MR device response time is the MR fluid response time itself. A significant factor is the so-called rheological response time. The rheological response time is connected with the structuring particle's time and the development of shear stress in MR fluid during the deformation. The main aim of this paper is to experimentally determine the rheological response time of MR fluid and evaluated the effect of shear rate, magnetic field level, and carrier fluid viscosity. The unique design of the rheometer, which allows the rapid change of a magnetic field, is presented. The rheological response time of MRF 132-DG and MRC-C1L is in the range of 0.8–1.4 ms, depending on the shear rate. The higher the shear rate, the shorter the response time. It can be stated that the higher the magnetization of the MR fluid, the lower the response time. The higher the viscosity, the higher the rheological response time. The measured data of rheological response time was generalized and one master curve was determined.

Funder

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3