TwinPort: 5G drone-assisted data collection with digital twin for smart seaports

Author:

Yigit Yagmur,Nguyen Long D.,Ozdem Mehmet,Kinaci Omer Kemal,Hoang Trang,Canberk Berk,Duong Trung Q.ORCID

Abstract

AbstractNumerous ports worldwide are adopting automation to boost productivity and modernize their operations. At this point, smart ports become a more important paradigm for handling increasing cargo volumes and increasing operational efficiency. In fact, as ports become more congested and cargo volumes increase, the need for accurate navigation through seaports is more pronounced to avoid collisions and the resulting consequences. To this end, digital twin (DT) technology in the fifth-generation (5G) networks and drone-assisted data collection can be combined to provide precise ship maneuvering. In this paper, we propose a DT model using drone-assisted data collection architecture, called TwinPort, to offer a comprehensive port management system for smart seaports. We also present a recommendation engine to ensure accurate ship navigation within a smart port during the docking process. The experimental results reveal that our solution improves the trajectory performance by approaching the desired shortest path. Moreover, our solution supports significantly reducing financial costs and protecting the environment by reducing fuel consumption.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3