Wintertime investigation of PM10 concentrations, sources, and relationship with different meteorological parameters

Author:

Zeb Bahadar,Ditta Allah,Alam Khan,Sorooshian Armin,Din Badshah Ud,Iqbal Rashid,Habib ur Rahman Muhammed,Raza Ahsan,Alwahibi Mona S.,Elshikh Mohamed S.

Abstract

AbstractMeteorological factors play a crucial role in affecting air quality in the urban environment. Peshawar is the capital city of the Khyber Pakhtunkhwa province in Pakistan and is a pollution hotspot. Sources of PM10 and the influence of meteorological factors on PM10 in this megacity have yet to be studied. The current study aims to investigate PM10 mass concentration levels and composition, identify PM10 sources, and quantify links between PM10 and various meteorological parameters like temperature, relative humidity (RH), wind speed (WS), and rainfall (RF) during the winter months from December 2017 to February 2018. PM10 mass concentrations vary from 180 – 1071 µg m−3, with a mean value of 586 ± 217 µg m−3. The highest concentration is observed in December, followed by January and February. The average values of the mass concentration of carbonaceous species (i.e., total carbon, organic carbon, and elemental carbon) are 102.41, 91.56, and 6.72 μgm−3, respectively. Water-soluble ions adhere to the following concentration order: Ca2+  > Na+  > K+  > NH4+  > Mg2+. Twenty-four elements (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Co, Zn, Ga, Ge, As, Se, Kr, Ag, Pb, Cu, and Cd) are detected in the current study by PIXE analysis. Five sources based on Positive Matrix Factorization (PMF) modeling include industrial emissions, soil and re-suspended dust, household combustion, metallurgic industries, and vehicular emission. A positive relationship of PM10 with temperature and relative humidity is observed (r = 0.46 and r = 0.56, respectively). A negative correlation of PM10 is recorded with WS (r =  − 0.27) and RF (r =  − 0.46). This study’s results motivate routine air quality monitoring owing to the high levels of pollution in this region. For this purpose, the establishment of air monitoring stations is highly suggested for both PM and meteorology. Air quality standards and legislation need to be revised and implemented. Moreover, the development of effective control strategies for air pollution is highly suggested.

Funder

King Saud University, Riyadh, Saudi Arabia

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3