Modeling of ionic liquids viscosity via advanced white-box machine learning

Author:

Kiani Sajad,Hadavimoghaddam Fahimeh,Atashrouz Saeid,Nedeljkovic Dragutin,Hemmati-Sarapardeh Abdolhossein,Mohaddespour Ahmad

Abstract

AbstractIonic liquids (ILs) are more widely used within the industry than ever before, and accurate models of their physicochemical characteristics are becoming increasingly important during the process optimization. It is especially challenging to simulate the viscosity of ILs since there is no widely agreed explanation of how viscosity is determined in liquids. In this research, genetic programming (GP) and group method of data handling (GMDH) models were used as white-box machine learning approaches to predict the viscosity of pure ILs. These methods were developed based on a large open literature database of 2813 experimental viscosity values from 45 various ILs at different pressures (0.06–298.9 MPa) and temperatures (253.15–573 K). The models were developed based on five, six, and seven inputs, and it was found that all the models with seven inputs provided more accurate results, while the models with five and six inputs had acceptable accuracy and simpler formulas. Based on GMDH and GP proposed approaches, the suggested GMDH model with seven inputs gave the most exact results with an average absolute relative deviation (AARD) of 8.14% and a coefficient of determination (R2) of 0.98. The proposed techniques were compared with theoretical and empirical models available in the literature, and it was displayed that the GMDH model with seven inputs strongly outperforms the existing approaches. The leverage statistical analysis revealed that most of the experimental data were located within the applicability domains of both GMDH and GP models and were of high quality. Trend analysis also illustrated that the GMDH and GP models could follow the expected trends of viscosity with variations in pressure and temperature. In addition, the relevancy factor portrayed that the temperature had the greatest impact on the ILs viscosity. The findings of this study illustrated that the proposed models represented strong alternatives to time-consuming and costly experimental methods of ILs viscosity measurement.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3