Preparation magnetic graphene oxide/diethylenetriamine composite for removal of methylene blue from aqueous solutions

Author:

Banaei Alireza,Saadat Afshin,Javadi Roghayyeh,Pargolghasemi Parinaz

Abstract

AbstractGraphene oxide (GO) and its derivatives have several applications in many areas such as environmental and energy materials, water treatment and biomedical technologies. Because of having various polar groups on its surface, GO is considered as an excellent adsorbent. However, for many applications such as adsorption of pollution from aqueous solutions, chemical functionalization of graphene oxide is often a necessary requirement. In the present study, a new composite from graphene oxide, diethylenetriamine (DETA) and silica coated MnFe2O4 nanoparticles (GO/DETA/MnFe2O4@SiO2) was prepared. The structure, thermal stability and magnetic properties of the composite were studied by FT-IR, XRD, SEM, EDS, VSM and TGA spectroscopic methods. The prepared composite showed magnetic property with a saturation magnetization of 3.0 emu/g. The adsorption properties of GO/DETA/MnFe2O4@SiO2 composite for methylene blue (MB) in aqueous solution were studied using batch method. The effects of important parameters on the surface adsorption process of MB, including pH, contact time, adsorbent dosage and initial dye concentration were investigated. The adsorption isotherm was in accordance with Langmuir model showing surface homogeneity of the adsorbent. According to the Langmuir analysis, the maximum adsorption capacity (qm) of GO/DETA/MnFe2O4@SiO2 composite for MB was found to be 243.91 mg/g. The kinetic studies showed that the adsorption was pseudo first-order process. In addition, the thermodynamic studies indicated the adsorption was spontaneous and endothermic process.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3