Abstract
AbstractIncorporating species distributions into conservation planning has traditionally involved long-term representations of habitat use where temporal variation is averaged to reveal habitats that are most suitable across time. Advances in remote sensing and analytical tools have allowed for the integration of dynamic processes into species distribution modeling. Our objective was to develop a spatiotemporal model of breeding habitat use for a federally threatened shorebird (piping plover,Charadrius melodus). Piping plovers are an ideal candidate species for dynamic habitat models because they depend on habitat created and maintained by variable hydrological processes and disturbance. We integrated a 20-year (2000–2019) nesting dataset with volunteer-collected sightings (eBird) using point process modeling. Our analysis incorporated spatiotemporal autocorrelation, differential observation processes within data streams, and dynamic environmental covariates. We evaluated the transferability of this model in space and time and the contribution of the eBird dataset. eBird data provided more complete spatial coverage in our study system than nest monitoring data. Patterns of observed breeding density depended on both dynamic (e.g., surface water levels) and long-term (e.g., proximity to permanent wetland basins) environmental processes. Our study provides a framework for quantifying dynamic spatiotemporal patterns of breeding density. This assessment can be iteratively updated with additional data to improve conservation and management efforts, because reducing temporal variability to average patterns of use may cause a loss in precision for such actions.
Funder
U.S. Fish and Wildlife Service
U.S. Geological Survey - Northern Prairie Wildlife Research Center
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献