Mapping urban mobility using vehicle telematics to understand driving behaviour

Author:

Xiang Junjun,Ghaffarpasand Omid,Pope Francis D.

Abstract

AbstractTelematics data, primarily collected from on-board vehicle devices (OBDs), has been utilised in this study to generate a thorough understanding of driving behaviour. The urban case study area is the large metropolitan region of the West Midlands, UK, but the approach is generalizable and translatable to other global urban regions. The new approach of GeoSpatial and Temporal Mapping of Urban Mobility (GeoSTMUM) is used to convert telematics data into driving metrics, including the relative time the vehicle fleet spends idling, cruising, accelerating, and decelerating. The telematics data is also used to parameterize driving volatility and aggressiveness, which are key factors within road safety, which is a global issue. Two approaches to defining aggressive driving are applied and assessed, they are vehicle jerk (the second derivative of vehicle speed), and the profile of speed versus acceleration/deceleration. The telematics-based approach has a very high spatial resolution (15–150 m) and temporal resolution (2 h), which can be used to develop more accurate driving cycles. The approach allows for the determination of road segments with the highest potential for aggressive driving and highlights where additional safety measures could beneficially be adopted. Results highlight the strong correlation between vehicle road occupancy and aggressive driving.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3