Surface coating and speckling of the human iliotibial tract does not affect its load-deformation properties

Author:

Zwirner Johann,Ondruschka Benjamin,Scholze Mario,Hammer Niels

Abstract

AbstractStochastic surface patterns form an important requirement to facilitate digital image correlation and to subsequently quantify material properties of various tissues when loaded and deformed without artefacts arising from material slippage. Depending on the samples’ natural colour, a surface pattern is created by speckling with colour or dye only, or it requires combined surface coating and speckling before to enhance the contrast, to facilitate high-quality data recording for mechanical evaluation. However, it is unclear to date if the colours deployed for coating and speckling do significantly alter the biomechanical properties of soft tissues. The given study investigated the biomechanical properties of 168 human iliotibial tract samples as a model for collagen-rich soft tissues, separated into four groups: untreated, graphite speckling only, water-based coating plus graphite speckling and solvent-based coating plus graphite speckling following a standardized approach of application and data acquisition. The results reveal that elastic modulus, ultimate tensile strength and strain at maximum force of all groups were similar and statistically non-different (p ≥ 0.69). Qualitatively, the speckle patterns revealed increasing contrast differences in the following order: untreated, graphite speckling only, water-based coating plus graphite speckling and solvent-based coating plus graphite speckling. Conclusively, both coating by water- and solvent-based paints, as well as exclusive graphite speckling, did not significantly influence the load-deformation parameters of the here used human iliotibial tract as a model for collagen-rich soft tissues. In consequence, water- and solvent-based coating paints seem equally suitable to coat collagen-rich soft tissues for digital image correlation, resulting in suitable speckle patterns and unbiased data acquisition.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3