Infection Inspection: using the power of citizen science for image-based prediction of antibiotic resistance in Escherichia coli treated with ciprofloxacin

Author:

Farrar Alison,Feehily Conor,Turner Piers,Zagajewski Alexander,Chatzimichail Stelios,Crook Derrick,Andersson Monique,Oakley Sarah,Barrett Lucinda,El Sayyed Hafez,Fowler Philip W.,Nellåker Christoffer,Kapanidis Achillefs N.,Stoesser Nicole

Abstract

AbstractAntibiotic resistance is an urgent global health challenge, necessitating rapid diagnostic tools to combat its threat. This study uses citizen science and image feature analysis to profile the cellular features associated with antibiotic resistance in Escherichia coli. Between February and April 2023, we conducted the Infection Inspection project, in which 5273 volunteers made 1,045,199 classifications of single-cell images from five E. coli strains, labelling them as antibiotic-sensitive or antibiotic-resistant based on their response to the antibiotic ciprofloxacin. User accuracy in image classification reached 66.8 ± 0.1%, lower than our deep learning model's performance at 75.3 ± 0.4%, but both users and the model were more accurate when classifying cells treated at a concentration greater than the strain’s own minimum inhibitory concentration. We used the users’ classifications to elucidate which visual features influence classification decisions, most importantly the degree of DNA compaction and heterogeneity. We paired our classification data with an image feature analysis which showed that most of the incorrect classifications happened when cellular features varied from the expected response. This understanding informs ongoing efforts to enhance the robustness of our diagnostic methodology. Infection Inspection is another demonstration of the potential for public participation in research, specifically increasing public awareness of antibiotic resistance.

Funder

Oxford Martin School, University of Oxford

Clarendon Fund

Oxford University Hospitals NHS Foundation Trust

National Institute for Health and Care Research

Wellcome Trust

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3