Isolate sets partition benefits community detection of parallel Louvain method

Author:

Qie Hang,Li Shijie,Dou Yong,Xu Jinwei,Xiong Yunsheng,Gao Zikai

Abstract

AbstractCommunity detection is a vital task in many fields, such as social networks, and financial analysis, to name a few. The Louvain method, the main workhorse of community detection, is a popular heuristic method based on modularity. But it is difficult for the sequential Louvain method to deal with large-scale graphs. In order to overcome the drawback, researchers have proposed several parallel Louvain methods (Parallel Louvain Method, PLM), which suffer two challenges: (1) latency in the information synchronization and (2) communities swap. To tackle these two challenges, we propose a graph partition algorithm for the parallel Louvain method. Different from existing graph partition algorithms, our graph partition algorithm divides the graph into subgraphs called isolate sets, in which vertices are relatively decoupled from others, and the PLM computes and synchronizes information without delay and communities swap. We first describe concepts and properties of isolate sets. In the second place, we propose an algorithm to divide the graph into isolate sets, which enjoys the same computation complexity as the breadth-first search. Finally, we propose the isolate-set-based parallel Louvain method, which calculates and updates vertices information without latency and communities swap. We implement our method with OpenMP on an 8-cores PC. Experiments on 18 graphs show that our parallel method achieves a maximum 4.62 $$\times $$ × speedup compared with the sequential method, and outputs higher modularity on 14 graphs.

Funder

HPCL Key Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3