Author:
Li Danting,Zhang Meiyu,Wu Shengli,Tan Huiwen,Li Nong
Abstract
AbstractIn recent years, nonalcoholic fatty liver disease (NAFLD) has become the most important chronic liver disease worldwide. The prevalence of NAFLD in China has also increased year by year. This study aimed to detect NAFLD early by developing a nomogram model in Chinese individuals. A total of 8861 subjects who underwent physical examination in Karamay and were 18 to 62 years old were enrolled. Clinical information, laboratory results and ultrasound findings were retrieved. The participants were randomly assigned to the development set (n = 6203) and the validation set (n = 2658). Significant variables independently associated with NAFLD were identified by least absolute shrinkage and selection operator (LASSO) regression and the multiple logistic regression model. Six variables were selected to construct the nomogram: age, sex, waist circumference (WC), body mass index (BMI), alanine aminotransferase (ALT), triglycerides and glucose index (TyG). The area under the receiver operating characteristic curve (AUROC) of the development set and validation set was 0.886 and 0.894, respectively. The calibration curves showed excellent accuracy of the nomogram model. This physical examination and laboratory test-based nomogram can predict the risk of NAFLD intuitively and individually.
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献