Nonlinearly interacting entrainment due to shear and convection in the surface ocean

Author:

Ushijima Yusuke,Yoshikawa Yutaka

Abstract

AbstractLarge-eddy simulations were performed to investigate the entrainment buoyancy flux at the mixed layer base due to nonlinearly interacting shear-driven turbulence (ST) and convective turbulence (CT). The fluxes due to pure ST and pure CT were first evaluated, and their scalings were derived. The entrainment flux due to coexisting ST and CT was then evaluated and compared to the scaling-based fluxes due to the pure turbulences. It was found that nonlinear effects reduce the entrainment flux by $$30 \%$$ 30 % when the turbulent kinetic energy production rates of ST and CT are comparable. The mixing parameterization schemes used in ocean general circulation models (OGCMs) fail to accurately reproduce the mixing due to the pure turbulences and/or the nonlinear effects, and thus the mixed layer depth (MLD). Because analysis using global datasets suggests that nonlinear effects are large at the mid-latitudes, these results indicate that the nonlinear effects might be responsible for the deep MLD biases in OGCMs and that mixing parameterization schemes need to be improved to correctly represent ocean surface mixing due to shear and convection, as well as waves, in OGCMs.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3