Upside down sulphate dynamics in a saline inland lake

Author:

Margalef-Marti Rosanna,Sebilo Mathieu,Thibault De Chanvalon Aubin,Anschutz Pierre,Charbonnier Céline,Lauga Béatrice,Gonzalez-Alvarez Ivan,Tessier Emmanuel,Amouroux David

Abstract

AbstractThe sulphur cycle has a key role on the fate of nutrients through its several interconnected reactions. Although sulphur cycling in aquatic ecosystems has been thoroughly studied since the early 70’s, its characterisation in saline endorheic lakes still deserves further exploration. Gallocanta Lake (NE Spain) is an ephemeral saline inland lake whose main sulphate source is found on the lake bed minerals and leads to dissolved sulphate concentrations higher than those of seawater. An integrative study including geochemical and isotopic characterization of surface water, porewater and sediment has been performed to address how sulphur cycling is constrained by the geological background. In freshwater and marine environments, sulphate concentration decreases with depth are commonly associated with bacterial sulphate reduction (BSR). However, in Gallocanta Lake sulphate concentrations in porewater increase from 60 mM at the water–sediment interface to 230 mM at 25 cm depth. This extreme increase could be caused by dissolution of the sulphate rich mineral epsomite (MgSO4·7H2O). Sulphur isotopic data was used to validate this hypothesis and demonstrate the occurrence of BSR near the water–sediment interface. This dynamic prevents methane production and release from the anoxic sediment, which is advantageous in the current context of global warming. These results underline that geological context should be considered in future biogeochemical studies of inland lakes with higher potential availability of electron acceptors in the lake bed compared to the water column.

Funder

E2S UPPA

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3