Discovery of potential natural dihydroorotate dehydrogenase inhibitors and their synergism with brequinar via integrated molecular docking, dynamic simulations and in vitro approach

Author:

Khairy Asmaa,Hammoda Hala M.,Celik Ismail,Zaatout Hala H.,Ibrahim Reham S.

Abstract

AbstractThe critical function of dihydroorotate dehydrogenase (DHODH) in pyrimidine synthesis attracted a great interest throughout beyond decades. Inhibitors of human DHODH (hDHODH) have validated efficacy for remedy of many immunological diseases. Brequinar and leflunomide are examples of such compounds. However, most of such immunosuppressive medications suffer from a lot of side effects and accompanied by adverse metabolic disturbances and toxicities. So that, immunomodulation utilizing natural products received the attention of many researchers. In this study, computer-aided molecular docking, molecular dynamic (MD) simulations and biochemical testing were utilized to find new pharmacologically active chemical entities from natural sources to combat immunosuppressive diseases. More specifically, Glide docking was used for a structure-based virtual screening of in-house 3D database of compounds retrieved from some traditionally known immunomodulatory plants surveyed from literature. The top five scored plants were found to be Zingiber officinale, Curcuma longa, Glycyrrhiza glabra, Allium sativum and Olea europaea. In vitro hDHODH inhibitory assays illustrated the ability of Allium sativum and silymarin standard hits; specifically, silibinin, to significantly inhibit the hDHODH enzyme. Molecular docking and MD simulations revealed a strong binding of the discovered hits within the active site. Following that, the most promising hits were tested separately with brequinar in a fixed-ratio combination setting to assess their combined effects on hDHODH catalytic inhibition. The binary combination of silibinin and brequinar revealed that in this combination, brequinar could be utilized at a dose 9.33-fold less when compared to its single-use to produce 99% inhibition for hDHODH enzyme. These findings confirmed that this binary mixture is an excellent combination providing better therapeutic effects and lower side effects.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3