Author:
Birleanu Corina,Pustan Marius,Cioaza Mircea,Molea Andreia,Popa Florin,Contiu Glad
Abstract
AbstractNano-lubricants offer improved tribological properties in many applications, such as machines and engines. The presence of nanoparticles in the lubricating oil affects its wear, friction, thermal, chemical and physical properties in many ways. Titanium dioxide (TiO2) is a promising lubricant additive for enhanced engine efficiency. This article reports the effect of 10 W-30 pure base engine oil suspended TiO2 nanoparticles. Four different volume concentrations (0.01%, 0.025%, 0.050% and 0.075%) of TiO2 nanoparticles in the base lubricating oil are used for the analysis. The tribological tests were performed at ambient temperature as well as at 75 °C using a four ball tribometer. Scanning electron microscope (SEM) and Alicona Inginite Focus G5 microscope were used to analyze the worn surface. The results show that the surface-modified TiO2 nanoparticles can remarkably improve the load-carrying capacity, the friction reducing, and anti-wear abilities of the additive oil. The diameter of the wear trace and the coefficient of friction are the tribological properties analyzed for the nano-lubricant prepared at different volume concentration (VC). It was found that the diameter of the wear scar and the coefficient of friction increase with increasing VC of TiO2 nanoparticles in the lubricating oil. The main objective of the paper is to present the recent progress and, consequently, to develop a comprehensive understanding of the tribological behavior of engine oil mixed with TiO2 nanoparticles.
Publisher
Springer Science and Business Media LLC
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献