Computational analysis of substituent effects on proton affinity and gas-phase basicity of TEMPO derivatives and their hydrogen bonding interactions with water molecules

Author:

Shiroudi Abolfazl,Śmiechowski Maciej,Czub Jacek,Abdel-Rahman Mohamed A.

Abstract

AbstractThe study investigates the molecular structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives in the gas phase using B3LYP and M06-2X functional methods. Intermolecular interactions are analyzed using natural bond orbital (NBO) and atoms in molecules (AIM) techniques. NO2-substituted TEMPO displays high reactivity, less stability, and softer properties. The study reveals that the stability of TEMPO derivatives is mainly influenced by LP(e) → σ electronic delocalization effects, with the highest stabilization observed on the oxygen atom of the nitroxide moiety. This work also considers electron density, atomic charges, and energetic and thermodynamic properties of the studied NO radicals, and their relative stability. The proton affinity and gas-phase basicity of the studied compounds were computed at T = 298 K for O-protonation and N-protonation, respectively. The studied DFT method calculations show that O-protonation is more stable than N-protonation, with an energy difference of 16.64–20.77 kcal/mol (22.80–25.68 kcal/mol) at the B3LYP (M06-2X) method. The AIM analysis reveals that the N–O…H interaction in H2O complexes has the most favorable hydrogen bond energy computed at bond critical points (3, − 1), and the planar configurations of TEMPO derivatives exhibit the highest EHB values. This indicates stronger hydrogen bonding interactions between the N–O group and water molecules.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3