Knowledge grounded medical dialogue generation using augmented graphs

Author:

Varshney Deeksha,Zafar Aizan,Behera Niranshu Kumar,Ekbal Asif

Abstract

AbstractSmart healthcare systems that make use of abundant health data can improve access to healthcare services, reduce medical costs and provide consistently high-quality patient care. Medical dialogue systems that generate medically appropriate and human-like conversations have been developed using various pre-trained language models and a large-scale medical knowledge base based on Unified Medical Language System (UMLS). However, most of the knowledge-grounded dialogue models only use local structure in the observed triples, which suffer from knowledge graph incompleteness and hence cannot incorporate any information from dialogue history while creating entity embeddings. As a result, the performance of such models decreases significantly. To address this problem, we propose a general method to embed the triples in each graph into large-scalable models and thereby generate clinically correct responses based on the conversation history using the recently recently released MedDialog(EN) dataset. Given a set of triples, we first mask the head entities from the triples overlapping with the patient’s utterance and then compute the cross-entropy loss against the triples’ respective tail entities while predicting the masked entity. This process results in a representation of the medical concepts from a graph capable of learning contextual information from dialogues, which ultimately aids in leading to the gold response. We also fine-tune the proposed Masked Entity Dialogue (MED) model on smaller corpora which contain dialogues focusing only on the Covid-19 disease named as the Covid Dataset. In addition, since UMLS and other existing medical graphs lack data-specific medical information, we re-curate and perform plausible augmentation of knowledge graphs using our newly created Medical Entity Prediction (MEP) model. Empirical results on the MedDialog(EN) and Covid Dataset demonstrate that our proposed model outperforms the state-of-the-art methods in terms of both automatic and human evaluation metrics.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3