Author:
Wang Zuhua,Liu Min,Chen Fen,Li Haibo
Abstract
AbstractThinning is a widely used practice in forest management, but the acclimation mechanisms of fine roots to forest thinning are still unclear. We examined the variations in fine root traits of different branching orders and functional groups along a thinning intensity gradient in a 26-year-old Chinese fir (Cunninghamia lanceolata) plantation. With increasing thinning intensity, the root C concentration (RCC), root N concentration (RNC), specific root area (SRA), and specific root length (SRL) of the absorptive roots (the first two orders) significantly decreased, while root abundance (root biomass and root length density) and root tissue density (RTD) significantly increased. Fifty-four percent of the variation in the absorptive root traits could be explained by the soil N concentration and the biomass and diversity of the understorey vegetation. Conversely, transport root (third- and higher-order) traits did not vary significantly among different thinning intensities. The covariation of absorptive root traits across thinning intensities regarding two dimensions was as follows: the first dimension (46% of the total variation) represented changes in root abundance and chemical traits (related to RCC, RNC), belonging to an extensive foraging strategy; the second dimension (41% of the total variation) represented variations in root morphological traits (related to RTD, SRL and SRA), which is an intensive foraging strategy (i.e., root economic spectrum). These results suggested that the absorptive roots of Chinese fir adopt two-dimensional strategies to acclimate to the altered surroundings after thinning.
Funder
the Natural Science Foundation of Guizhou Provincial Department
PhD research startup foundation of Tongren University
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Crotteau, J. S., Keyes, C. R., Hood, S. M. & Larson, A. J. Vegetation dynamics following compound disturbance in a dry pine forest: Fuel treatment then bark beetle outbreak. Ecol. Appl. 30, 1–19 (2019).
2. del Río, M., Bravo-Oviedo, A., Pretzsch, H., Löf, M. & Ruiz-Peinado, R. A review of thinning effects on scots pine stands: From growth and yield to new challenges under global change. For. Syst. 26, eR03S (2017).
3. Dang, P., Gao, Y., Liu, J., Yu, S. & Zhao, Z. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Sci. Total Environ. 630, 171–180 (2018).
4. Cabon, A., Mouillot, F., Lempereur, M. & Ourcival, J. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice forest ecology and management thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak. For. Ecol. Manag. 409, 333–342 (2018).
5. Drobyshev, I., Widerberg, M. K., Andersson, M. & Wang, X. Thinning around old oaks in spruce production forests: Current practices show no positive effect on oak growth rates and need fine tuning. Scand. J. For. Res. 34, 126–132 (2019).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献