Variation in fine root traits with thinning intensity in a Chinese fir plantation insights from branching order and functional groups

Author:

Wang Zuhua,Liu Min,Chen Fen,Li Haibo

Abstract

AbstractThinning is a widely used practice in forest management, but the acclimation mechanisms of fine roots to forest thinning are still unclear. We examined the variations in fine root traits of different branching orders and functional groups along a thinning intensity gradient in a 26-year-old Chinese fir (Cunninghamia lanceolata) plantation. With increasing thinning intensity, the root C concentration (RCC), root N concentration (RNC), specific root area (SRA), and specific root length (SRL) of the absorptive roots (the first two orders) significantly decreased, while root abundance (root biomass and root length density) and root tissue density (RTD) significantly increased. Fifty-four percent of the variation in the absorptive root traits could be explained by the soil N concentration and the biomass and diversity of the understorey vegetation. Conversely, transport root (third- and higher-order) traits did not vary significantly among different thinning intensities. The covariation of absorptive root traits across thinning intensities regarding two dimensions was as follows: the first dimension (46% of the total variation) represented changes in root abundance and chemical traits (related to RCC, RNC), belonging to an extensive foraging strategy; the second dimension (41% of the total variation) represented variations in root morphological traits (related to RTD, SRL and SRA), which is an intensive foraging strategy (i.e., root economic spectrum). These results suggested that the absorptive roots of Chinese fir adopt two-dimensional strategies to acclimate to the altered surroundings after thinning.

Funder

the Natural Science Foundation of Guizhou Provincial Department

PhD research startup foundation of Tongren University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3