Hybrid YSGOA and neural networks based software failure prediction in cloud systems

Author:

Kaur Ramandeep,Vaithiyanathan Revathi

Abstract

AbstractIn the realm of cloud computing, ensuring the dependability and robustness of software systems is paramount. The intricate and evolving nature of cloud infrastructures, however, presents substantial obstacles in the pre-emptive identification and rectification of software anomalies. This study introduces an innovative methodology that amalgamates hybrid optimization algorithms with Neural Networks (NN) to refine the prediction of software malfunctions. The core objective is to augment the purity metric of our method across diverse operational conditions. This is accomplished through the utilization of two distinct optimization algorithms: the Yellow Saddle Goat Fish Algorithm (YSGA), which is instrumental in the discernment of pivotal features linked to software failures, and the Grasshopper Optimization Algorithm (GOA), which further polishes the feature compilation. These features are then processed by Neural Networks (NN), capitalizing on their proficiency in deciphering intricate data patterns and interconnections. The NNs are integral to the classification of instances predicated on the ascertained features. Our evaluation, conducted using the Failure-Dataset-OpenStack database and MATLAB Software, demonstrates that the hybrid optimization strategy employed for feature selection significantly curtails complexity and expedites processing

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3