A new time-varying coefficient regression approach for analyzing infectious disease data

Author:

Liu Juxin,Bellows Brandon,Hu X. Joan,Wu Jianhong,Zhou Zhou,Soteros Chris,Wang Lin

Abstract

AbstractSince the beginning of the global pandemic of Coronavirus (SARS-COV-2), there has been many studies devoted to predicting the COVID-19 related deaths/hospitalizations. The aim of our work is to (1) explore the lagged dependence between the time series of case counts and the time series of death counts; and (2) utilize such a relationship for prediction. The proposed approach can also be applied to other infectious diseases or wherever dynamics in lagged dependence are of primary interest. Different from the previous studies, we focus on time-varying coefficient models to account for the evolution of the coronavirus. Using two different types of time-varying coefficient models, local polynomial regression models and piecewise linear regression models, we analyze the province-level data in Canada as well as country-level data using cumulative counts. We use out-of-sample prediction to evaluate the model performance. Based on our data analyses, both time-varying coefficient modeling strategies work well. Local polynomial regression models generally work better than piecewise linear regression models, especially when the pattern of the relationship between the two time series of counts gets more complicated (e.g., more segments are needed to portray the pattern). Our proposed methods can be easily and quickly implemented via existing R packages.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Brandon is partially funded by the Mathematics for Public Health (MfPH) program, supported by NSERC-PHAC Emerging Infectious Disease Modeling Initiative.

Professor Hu is a member of the MfPH program, supported by NSERC-PHAC Emerging Infectious Disease Modeling Initiative.

Professor Wu is the co-lead of the MfPH program, supported by NSERC-PHAC Emerging Infectious Disease Modeling Initiative

Member of the MfPH program, supported by NSERC-PHAC Emerging Infectious Disease Modeling Initiative.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3