High N availability decreases N uptake and yield under limited water availability in maize

Author:

Flynn Nora E.,Comas Louise H.,Stewart Catherine E.,Fonte Steven J.

Abstract

AbstractWater and nitrogen (N) are the most limiting factors to plant productivity globally, but we lack a critical understanding of how water availability impacts N dynamics in agricultural systems. Plant N requirements are particularly uncertain when water is limited because of the interactive effect of water and N on plant growth, N demand, and plant uptake. We investigated impacts of N application and water availability on plant growth and N movement, including above and belowground growth, water productivity, N productivity, N uptake, N recovery, and greenhouse gas emissions within a semi-arid system in northeastern Colorado, USA. Moderately high soil N availability depressed grain yield and shoot growth under both limited and full water availability, despite no indication of physical toxicity, and came with additional risk of deleterious N losses. Under low N availability, plant N concentrations in aboveground tissues showed greater recovery of N than what was applied in the low N treatments under both full and limited water availability. This enhanced recovery underscores the need to better understand both plant soil foraging and processes governing resource availability under these conditions. Finally, limited water availability reduced N uptake across all N treatments and left 30% more soil nitrate (NO3) deep in the soil profile at the end of the season than under full water availability. Our results show that plant N needs are not linearly related to water use and emphasize the need for an integrated understanding of water and N interactions, plant foraging for these resources, and the dynamics of processes that make N available to plants.

Funder

Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3