Author:
Flynn Nora E.,Comas Louise H.,Stewart Catherine E.,Fonte Steven J.
Abstract
AbstractWater and nitrogen (N) are the most limiting factors to plant productivity globally, but we lack a critical understanding of how water availability impacts N dynamics in agricultural systems. Plant N requirements are particularly uncertain when water is limited because of the interactive effect of water and N on plant growth, N demand, and plant uptake. We investigated impacts of N application and water availability on plant growth and N movement, including above and belowground growth, water productivity, N productivity, N uptake, N recovery, and greenhouse gas emissions within a semi-arid system in northeastern Colorado, USA. Moderately high soil N availability depressed grain yield and shoot growth under both limited and full water availability, despite no indication of physical toxicity, and came with additional risk of deleterious N losses. Under low N availability, plant N concentrations in aboveground tissues showed greater recovery of N than what was applied in the low N treatments under both full and limited water availability. This enhanced recovery underscores the need to better understand both plant soil foraging and processes governing resource availability under these conditions. Finally, limited water availability reduced N uptake across all N treatments and left 30% more soil nitrate (NO3−) deep in the soil profile at the end of the season than under full water availability. Our results show that plant N needs are not linearly related to water use and emphasize the need for an integrated understanding of water and N interactions, plant foraging for these resources, and the dynamics of processes that make N available to plants.
Funder
Agricultural Research Service
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Wallace, J. S. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 82, 105–119 (2000).
2. Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).
3. Kukal, M. S. & Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 8, 1–18 (2018).
4. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. U. S. A. 109, 9320–9325 (2012).
5. Warziniack, T. & Brown, T. C. The importance of municipal and agricultural demands in future water shortages in the United States. Environ. Res. Lett. 14, 084036 (2019).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献