Differentiation of retroperitoneal paragangliomas and schwannomas based on computed tomography radiomics

Author:

Cao Yuntai,Wang Zhan,Ren Jialiang,Liu Wencun,Da Huiwen,Yang Xiaotong,Bao Haihua

Abstract

AbstractThe purpose of this study was to differentiate the retroperitoneal paragangliomas and schwannomas using computed tomography (CT) radiomics. This study included 112 patients from two centers who pathologically confirmed retroperitoneal pheochromocytomas and schwannomas and underwent preoperative CT examinations. Radiomics features of the entire primary tumor were extracted from non-contrast enhancement (NC), arterial phase (AP) and venous phase (VP) CT images. The least absolute shrinkage and selection operator method was used to screen out key radiomics signatures. Radiomics, clinical and clinical-radiomics combined models were built to differentiate the retroperitoneal paragangliomas and schwannomas. Model performance and clinical usefulness were evaluated by receiver operating characteristic curve, calibration curve and decision curve. In addition, we compared the diagnostic accuracy of radiomics, clinical and clinical-radiomics combined models with radiologists for pheochromocytomas and schwannomas in the same set of data. Three NC, 4 AP, and 3 VP radiomics features were retained as the final radiomics signatures for differentiating the paragangliomas and schwannomas. The CT characteristics CT attenuation value of NC and the enhancement magnitude at AP and VP were found to be significantly different statistically (P < 0.05). The NC, AP, VP, Radiomics and clinical models had encouraging discriminative performance. The clinical-radiomics combined model that combined radiomics signatures and clinical characteristics showed excellent performance, with an area under curve (AUC) values were 0.984 (95% CI 0.952–1.000) in the training cohort, 0.955 (95% CI 0.864–1.000) in the internal validation cohort and 0.871 (95% CI 0.710–1.000) in the external validation cohort. The accuracy, sensitivity and specificity were 0.984, 0.970 and 1.000 in the training cohort, 0.960, 1.000 and 0.917 in the internal validation cohort and 0.917, 0.923 and 0.818 in the external validation cohort, respectively. Additionally, AP, VP, Radiomics, clinical and clinical-radiomics combined models had a higher diagnostic accuracy for pheochromocytomas and schwannomas than the two radiologists. Our study demonstrated the CT-based radiomics models has promising performance in differentiating the paragangliomas and schwannomas.

Funder

Qinghai Province "Kunlun Talents High-end Innovation and Entrepreneurial Talents" Top Talent Cultivation Project

National Natural Science Foundation of China

Qinghai Provincial Department of science and technology of China

The clinical key specialty cultivation project of Radiology Department of Chongqing Jiulongpo People's Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3