Discovery of potent antimycobacterial agents targeting lumazine synthase (RibH) of Mycobacterium tuberculosis

Author:

Singh Monica,Dhanwal Anannya,Verma Arpita,Augustin Linus,Kumari Niti,Chakraborti Soumyananda,Agarwal Nisheeth,Sriram Dharmarajan,Dey Ruchi Jain

Abstract

AbstractTuberculosis (TB) continues to be a global health crisis, necessitating urgent interventions to address drug resistance and improve treatment efficacy. In this study, we validate lumazine synthase (RibH), a vital enzyme in the riboflavin biosynthetic pathway, as a potential drug target against Mycobacterium tuberculosis (M. tb) using a CRISPRi-based conditional gene knockdown strategy. We employ a high-throughput molecular docking approach to screen ~ 600,000 compounds targeting RibH. Through in vitro screening of 55 shortlisted compounds, we discover 3 compounds that exhibit potent antimycobacterial activity. These compounds also reduce intracellular burden of M. tb during macrophage infection and prevent the resuscitation of the nutrient-starved persister bacteria. Moreover, these three compounds enhance the bactericidal effect of first-line anti-TB drugs, isoniazid and rifampicin. Corroborating with the in silico predicted high docking scores along with favourable ADME and toxicity profiles, all three compounds demonstrate binding affinity towards purified lumazine synthase enzyme in vitro, in addition these compounds exhibit riboflavin displacement in an in vitro assay with purified lumazine synthase indicative of specificity of these compounds to the active site. Further, treatment of M. tb with these compounds indicate reduced production of flavin adenine dinucleotide (FAD), the ultimate end product of the riboflavin biosynthetic pathway suggesting the action of these drugs on riboflavin biosynthesis. These compounds also show acceptable safety profile in mammalian cells, with a high selective index. Hence, our study validates RibH as an important drug target against M. tb and identifies potent antimycobacterial agents.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3