Author:
Xu Zhongming,Tang Shaohua,Liu Chuancai,Zhang Qiankun,Gu Heng,Li Xiaoli,Di Zengru,Li Zheng
Abstract
AbstractIn the study of brain functional connectivity networks, it is assumed that a network is built from a data window in which activity is stationary. However, brain activity is non-stationary over sufficiently large time periods. Addressing the analysis electroencephalograph (EEG) data, we propose a data segmentation method based on functional connectivity network structure. The goal of segmentation is to ensure that within a window of analysis, there is similar network structure. We designed an intuitive and flexible graph distance measure to quantify the difference in network structure between two analysis windows. This measure is modular: a variety of node importance indices can be plugged into it. We use a reference window versus sliding window comparison approach to detect changes, as indicated by outliers in the distribution of graph distance values. Performance of our segmentation method was tested in simulated EEG data and real EEG data from a drone piloting experiment (using correlation or phase-locking value as the functional connectivity strength metric). We compared our method under various node importance measures and against matrix-based dissimilarity metrics that use singular value decomposition on the connectivity matrix. The results show the graph distance approach worked better than matrix-based approaches; graph distance based on partial node centrality was most sensitive to network structural changes, especially when connectivity matrix values change little. The proposed method provides EEG data segmentation tailored for detecting changes in terms of functional connectivity networks. Our study provides a new perspective on EEG segmentation, one that is based on functional connectivity network structure differences.
Funder
The STI 2030—Major Projects grant of the Ministry of Science and Technology of China
The National Key Research and Development Program of China
The Innovation Team Project of Guangdong Provincial Department of Education
The Beijing Normal University research start-up fund
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献