Author:
Patiño-Ruiz Miyer,Fendler Klaus,Călinescu Octavian
Abstract
AbstractBacterial NhaB Na+/H+exchangers belonging to the Ion Transporter superfamily are poorly characterized in contrast to Na+/H+exchangers of the Cation Proton Antiporter superfamily which have NhaA fromEscherichia colias a prominent member. For a more detailed understanding of the intricacies of the exchanger’s transport mechanism, mutational studies are essential. Therefore, we mutated two protonatable residues present in the putative transmembrane region of NhaB fromKlebsiella pneumoniae(KpNhaB), which could serve as substrate binding sites, Asp146 and Asp404, to either glutamate or alanine and analyzed transport function and stability of the mutants using electrophysiological and fluorimetric techniques. While mutation of either Asp residue to Glu only had slight to moderate effects on the transport activity of the exchanger, the mutations D404A and D146A, in particular, had more profound effects on the transport function. Furthermore, a double mutant, D146A/D404A, exhibited a remarkable behavior at alkaline pH, where recorded electrical currents changed polarity, showing steady-state transport with a stoichiometry of H+:Na+ < 1, as opposed to the H+:Na+ > 1 stoichiometry of the WT. Thus, we showed that Asp146 and Asp404 are part of the substrate binding site(s) of KpNhaB and engineered a Na+/H+exchanger with a variable stoichiometry.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献