Author:
Cielecki Paweł Piotr,Hardenberg Michel,Amariei Georgiana,Henriksen Martin Lahn,Hinge Mogens,Klarskov Pernille
Abstract
AbstractSeveral optical spectroscopy and imaging techniques have already proven their ability to identify different plastic types found in household waste. However, most common optical techniques feasible for plastic sorting, struggle to measure black plastic objects due to the high absorption at visible and near-infrared wavelengths. In this study, 12 black samples of nine different materials have been characterized with Fourier-transform infrared spectroscopy (FTIR), hyperspectral imaging, and terahertz time-domain spectroscopy (THz-TDS). While FTIR validated the plastic types of the samples, the hyperspectral camera using visible and near-infrared wavelengths was challenged to measure the samples. The THz-TDS technique was successfully able to measure the samples without direct sample contact under ambient conditions. From the recorded terahertz waveforms the refractive index and absorption coefficient are extracted for all samples in the range from 0.4 to 1.0 THz. Subsequently, the obtained values were projected onto a two-dimensional map to discriminate the materials using the classifiers k-Nearest Neighbours, Bayes, and Support Vector Machines. A classification accuracy equal to unity was obtained, which proves the ability of THz-TDS to discriminate common black plastics.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献